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Abstract
Despite their ecological importance, sponges are often avoided in biodiversity stud-
ies and monitoring programs because they are notoriously difficult to identify using 
morphological or molecular methods. Here, we investigate the metabarcoding perfor-
mance of universal degenerate cytochrome c oxidase subunit I (COI) primers in detect-
ing species from this challenging phylum in a cryptobenthic community. Twenty-two 
modified Autonomous Reef Monitoring Structures (ARMS) were deployed for 2 years 
in mesocosms receiving unfiltered seawater from an adjacent reef slope. Upon recov-
ery, each unit was inspected by a marine sponge taxonomist who used a combination 
of taxonomy, imagery, and DNA barcoding (28S rRNA and COI) to identify sponges 
and generate a validated taxonomic richness value for each ARMS unit. A total of 
69 unique sponge barcoded morphologies (BMs) were identified from the classes 
Calcarea, Demospongiae, and Homoscleromorpha. Metabarcoding identified 41 
unique sponge molecular operational taxonomic units (MOTUs) from Demospongiae 
and Homoscleromorpha but the primers failed to amplify any species from the class 
Calcarea which comprised 22% of the BMs. Sponge richness did not differ between 
BMs and MOTUs assigned to the classes Demospongiae and Homoscleromorpha. 
However, assignments at the order and family level in Demospongiae underscore 
known limitations in sponge taxonomic resolution using the COI gene. The preva-
lence of false positives within the order Suberitida and the pervasiveness of false 
negatives within the order Haplosclerida highlighted both technical and biological 
constraints in the metabarcoding method. Overall, these results confirm the need 
for discretion in sponge MOTU assignments using universal degenerate barcoding 
primers that target a short fragment of the COI gene. However, they also demon-
strate that COI metabarcoding is capable of capturing sponge richness from a com-
plex natural community.
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1  | INTRODUC TION

DNA metabarcoding is redefining metazoan coral reef biodiversity 
surveys in the 21st century. Metabarcoding is progressively filling 
the extensive knowledge gap that exists in assessing the diversity 
and distribution of complex communities such as the cryptoben-
thos on coral reefs (Leray & Knowlton, 2016; Stat et al., 2017). 
Prior to the DNA revolution, coral reef biodiversity surveys were 
based on taxonomic identifications that predominantly targeted 
well-studied groups of organisms, such as fish and coral, that were 
conspicuous and had easily observed morphological features to 
distinguish species. In the field of marine biodiversity, body size 
is directly correlated with species knowledge (Fautin et al., 2010). 
The small and cryptic organisms that make up the vast majority of 
coral reef biodiversity are often ignored because they live deep 
within the reef matrix and require significant taxonomic exper-
tise and time for accurate assessment (Fautin et al., 2010; Fisher 
et al., 2015). Even though metabarcoding has propelled the field 
of biodiversity into a new realm of biomonitoring, its successful 
application relies on extensive DNA barcode reference librar-
ies and the power and efficiency of genetic markers and corre-
sponding primers to detect species across multiple phyla (Deagle 
et al., 2014).

For coral reef cryptobenthic metazoans, a 313 bp segment of 
the mitochondrial DNA (mtDNA) cytochrome c oxidase subunit I 
(COI) gene is the marker most commonly targeted for biodiver-
sity surveys because it has been proven effective in amplifying 
taxa across multiple phyla (Al-Rshaidat et al., 2016; Carvalho 
et al., 2019; Leray & Knowlton, 2015; Leray et al., 2013; Pearman 
et al., 2018; Ransome et al., 2017). However, evaluating the direct 
performance of these primers in estimating species richness from 
a complex cryptobenthic community in a natural environment is 
near-impossible given the paucity of marine invertebrate barcodes 
in reference libraries, the inevitable biases associated with PCR 
amplification (Elbrecht & Leese, 2015, 2017; Elbrecht et al., 2017; 
Gaspar & Thomas, 2013), sequencing (Bokulich et al., 2013; Huse 
et al., 2010; Kunin et al., 2010; Leray & Knowlton, 2017; Zhan 
et al., 2014), and the intrinsic challenges in species delimitations 
due to inconsistent rates of evolution within and across taxa 
(Brown et al., 2015; Meyer & Paulay, 2005). These biases can gen-
erate both false negatives (species being present in a sample but 
not detected) and false positives (species being detected but not 
present), thereby eroding the credibility of richness estimates in 
the absence of taxonomic validation.

One of the most diverse and functionally important groups 
within the cryptobenthos are sponges (phylum Porifera) (de 
Goeij et al., 2013; Richter & Wunsch, 1999; Richter et al., 2001; 
Rützler, 2004). Sponges play a pivotal role in sustaining coral reef 

biodiversity in nutrient-limited conditions (de Goeij et al., 2013). 
They absorb large quantities of dissolved organic matter released by 
seaweeds and corals and return that energy as particulate organic 
matter through the rapid proliferation and shedding of their cells. 
This released detritus is a major source of food that is transferred to 
higher trophic levels. Coined the sponge-loop, this process occurs 
predominantly within the cryptic habitats on coral reefs and helps to 
explain why coral reefs recycle nutrients effectively enough to sus-
tain such high biodiversity in oligotrophic seas (de Goeij et al., 2008; 
Goeij et al., 2013; Rix et al., 2017, 2018). However, despite their di-
versity and crucial ecological importance, sponges have often been 
overlooked in biodiversity studies.

Sponges are among the most difficult metazoan groups to 
identify to species using both taxonomic and molecular meth-
ods. The simplicity and plasticity of their morphological charac-
teristics combined with the lack of macroscopic hard structures 
in most species make them notoriously challenging to identify 
(Wörheide et al., 2007). Furthermore, sponges can harbor up to 
hundreds of in-faunal metazoans (Wendt et al., 1985) making them 
particularly challenging to DNA barcode because the DNA of its 
inhabitants can be co-extracted and either co-amplified or pref-
erentially amplified in place of the sponge (Vargas et al., 2012). 
Moreover, compared to other metazoans, mitochondrial DNA 
(mtDNA) in the sponge class Demospongiae evolves slowly 
(Huang et al., 2008; Shearer et al., 2002) whereas mtDNA in the 
class Calcarea evolves rapidly (Lavrov et al., 2013). The high rate 
of evolution in Calcarea results in the failure of standard COI prim-
ers to amplify target mtDNA regions (Lavrov et al., 2013; Voigt 
et al., 2012). The slow rate of evolution in demosponges results 
in less frequent nucleotide substitutions in the COI gene, making 
standard barcode sequences essentially uninformative at the spe-
cies level (Erpenbeck et al., 2006; Pöppe et al., 2010). Additionally, 
rampant polyphyly challenges species-level molecular resolution 
(Erpenbeck et al., 2007; Redmond et al., 2011). An extension to 
the standard 648 bp COI primers (Folmer et al., 1994) has pro-
vided greater resolution for some sponge species (Erpenbeck, 
Breeuwer, et al., 2006) but not others (Yang et al., 2017). Due to 
the unusual evolutionary patterns within the COI gene of many 
sponges, species delineations must be based on a combination of 
histological taxonomic and multi-locus phylogenetic approaches 
(Erpenbeck, Breeuwer, et al., 2006; Morrow & Cárdenas, 2015; 
Redmond et al., 2011; Yang et al., 2017). Even then, there are 
often mismatches between molecular markers in identifying spe-
cies boundaries (Carella et al., 2016; DeBiasse & Hellberg, 2015; 
Heim et al., 2007). Due to these taxonomic and molecular id-
iosyncrasies, sponges have received less attention than other 
groups in empirical DNA metabarcoding studies, despite having 
been uncovered as the most prominent sessile phylum found in 

K E Y W O R D S

28S, COI, community metabarcoding, coral reefs, cryptobenthic, DNA barcoding, mesocosm, 
Porifera



     |  3TIMMERS ET al.

many studies targeting the coral reef cryptobenthos (Al-Rshaidat 
et al., 2016; Carvalho et al., 2019; Nichols & Marko, 2019; Pearman 
et al., 2018; Ransome et al., 2017).

In spite of the known molecular challenges of marine sponges, 
given their diversity, abundance, and ecological importance in the 
cryptobenthos, we wanted to test the efficiency of the most com-
monly used universal COI primer for coral reef metazoans in cap-
turing sponge diversity from a complex cryptobenthic community 
(Geller et al., 2013; Leray et al., 2013). To do this, we placed 22 
Autonomous Reef Monitoring Structures (ARMS) in mesocosms 
receiving unfiltered raw seawater from an adjacent reef slope 
for 2 years. Upon recovery, each ARMS unit was carefully in-
spected and sponges were sorted into morphospecies groups and 
identified using a combination of taxonomy and DNA barcoding; 
thereby generating a validated taxonomic richness value for each 
unit. True richness values were then compared to results obtained 
from metabarcoding the homogenized cryptobenthic community 
that settled on each ARMS unit. We examined sponge composi-
tion between the assigned metabarcoding annotations and those 
identified through taxonomy and DNA barcoding to evaluate the 
similarities and differences in taxonomic classification. This study 
is the first of its kind to evaluate the direct performance of me-
tabarcoding-derived observed richness estimates with a validated 
taxonomic richness value for an entire phylum present within a 
field-based experiment.

2  | MATERIAL S AND METHODS

2.1 | Sampling

Twenty-two modified Autonomous Reef Monitoring Structure 
(ARMS) units composed of three gray type I PVC plates 
(23 cm × 23 cm) forming a two-tiered stack of one open and one 
semi-closed layer were placed in tanks located at the Hawaiʻi 
Institute of Marine Biology (HIMB) in Kāneʻohe Bay on the island 
of Oʻahu (Figure S1). Tanks received unfiltered raw seawater over 
a 24-month period piped from an adjacent reef slope, which fa-
cilitated the settlement and colonization of marine taxa. Upon re-
covery, each ARMS unit was disassembled. The top and bottom 
of each plate were photographed in high resolution and examined 
by a sponge taxonomist. For each unit, identified sponge morpho-
types were photographed, subsampled, and collected based on 
unique or uncertain morphology for subsequent genetic analyses. 
Subsampled sponges were placed in 95% ethanol for DNA barcod-
ing and, if enough tissue was available, were also fixed for histo-
logical evaluation in two additional solutions; one containing 4% 
paraformaldehyde, and the other containing 4% glutaraldehyde, 
and 0.1 M sodium cacodylate with 0.35 M sucrose. When sponge 
subsampling by the taxonomist was complete, ARMS plates 
were scraped clear of all accumulated biomass. Scraped material 
from each ARMS unit was combined, immediately homogenized 
within a sterilized blender, and preserved in 95% ethanol for 

high-throughput sequencing of the cytochrome c oxidase I (COI) 
gene.

2.2 | Sponge DNA barcoding and identification

DNA was extracted from sponge specimens using the Promega E-Z 
96 (R) Tissue DNA Kit (Promega Bio-Tek) following the manufacturer 
protocols. Polymerase chain reactions (PCR) were used to amplify 
partial fragments of the 28S rRNA and COI genes as these have been 
useful in sponge classification of underexplored sponge communi-
ties (Erpenbeck et al., 2016, 2020; Idan et al., 2018). Multiple prim-
ers were used hierarchically based on varying amplification success 
rates (Table S1). PCR reactions for both 28S rRNA and COI were car-
ried out in 40 µl total volume including the following: 14.4 µl of H2O, 
20 µl of BioMix Red (Bioline) PCR Mastermix, 0.8 µl of each primer 
(10 mM), 3.2 µl of bovine serum albumin (BSA) (100 mg/ml) and 
0.8 µl of template DNA (1–30 ng/µl). The PCR program consisted of 
an initial denaturation of at 94°C for 3 min. Each of 34 cycles began 
with 30 s at 94°C, but annealing temperatures and time for each 
reaction varied according to the primer pair being used (Table S1). 
Annealing steps were followed by a 1 min extension at 72°C for each 
cycle. The PCR program ended with a final extension at 72°C varying 
between 5 and 10 min, according to the primer pair. PCR products 
were examined on a 1% agarose gel stained with GelRed and purified 
using ExoFAP (Exonuclease I and Fast Alkaline Phosphatase – Life 
Technologies). Products showing multiple bands were purified by gel 
excision prior to cleanup for sequencing. Sequencing reactions were 
performed in both directions using the Big Dye TM terminator v. 3.1, 
and sequencing was done on an ABI Prism 3730 XL automated se-
quencer at the University of Hawai‘i Advanced Studies of Genomics, 
Proteomics and Bioinformatics sequencing facility.

Forward and reverse reads were trimmed (at an error proba-
bility limit of .05) before being assembled and edited by eye using 
Geneious 10 (Kearse et al., 2012). Inconsistent base calls were ed-
ited by selecting the highest confidence score from the two assem-
bled chromatograms. All assembled chromatograms resulted in 
>90% high-quality base pair reads with a mean Phred quality score 
≥40. Assembled sequences were saved and exported as a fasta 
file. Each fasta file from targeted gene sequences was checked 
for contamination using the BLAST (Altschul et al., 1990) function 
from GenBank. BLAST results that showed >85% sequence iden-
tity and a query cover of >60% to those belonging to Porifera were 
exported to Geneious 10 and aligned using the ClustalW algorithm 
with default parameters. Samples showing ≥2% sequence diver-
gence combined with unique morphological features were classi-
fied as distinct barcoded morphologies (BMs) within three Classes 
(Demospongiae, Calcarea, and Homoscleromorpha), providing the 
true sponge richness values for each ARMS unit. BM classifica-
tion to Order, Family, Genus and, if possible, species was based on 
morphological character comparisons to previous sponge collec-
tions in Hawaiʻi (Bergquist, 1967, 1977; De Laubenfels, 1950, 1951, 
1954, 1957; Pons et al., 2017) while also integrating a >97% COI 
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and 28S rRNA sequence identity, independent of the metabar-
coding. Neighbor-joining phylogenetic trees were generated from 
COI and 28S rRNA barcode data in Mega 10 (Kumar et al., 2018). 
Evolutionary distances were computed using the Tamura Nei 
model (Tamura & Nei, 1993) for COI with a total of 281 positions 
and Jukes-Cantor method for 28S rRNA (Jukes & Cantor, 1969) 
with 826 positions.

2.3 | DNA metabarcoding

Total genomic DNA was isolated using the DNeasy Powermax Soil 
Isolation Kit (Qiagen) following modifications to the manufacturer's 
protocol as per Ransome et al. (2017). Amplicons of the COI gene 
were generated via polymerase chain reaction (PCR) in triplicate 
20 μl reaction volumes for each sample (ARMS unit), targeting a 
313 bp fragment using the primers mICOlintF and jgHCO2198 
(Geller et al., 2013; Leray et al., 2013). Each 20 μl reaction included: 
7.65 μl of nanopure H2O, 10 μl of ImmoMix Red (2×; Bioline), 0.06 μl 
of each primer (10 μM), 0.15 μl BSA (10 mg/ml), and 1 μl template 
DNA (5–25 ng/μl). We used a touchdown PCR profile with 16 ini-
tial cycles: denaturation for 10 s at 95°C, annealing for 30 s at 62°C 
(−1°C per cycle), and extension for 60 s at 72°C, followed by 20 cy-
cles at an annealing temperature of 46°C (Leray et al., 2013).

PCR products were quality assessed by gel electrophoresis in 
2% agarose gel and amplification success was defined by the pres-
ence of a clear band of approximately 340 bp. PCR replications were 
then pooled, purified with AMPure XP beads (Beckman Coulter Life 
Sciences), and quality assessed again by gel electrophoresis. Illumina 
adapters were ligated to cleaned PCR products using the Kapa 
Hyper-Prep PCR-free Kit. Libraries were validated via qPCR using 
the KAPA library quantification kit and sized and checked for qual-
ity using an Agilent Technologies 2100 Bioanalyzer. Samples passing 
QC were shipped to the University of California, Riverside's Institute 
for Integrative Genome Biology for sequencing on an Illumina MiSeq 
platform using v3 chemistry (2 × 300 bp paired-ends).

We chose the user-friendly and computationally fast R modu-
lar package pipeline for metabarcoding bioinformatics—Just Another 
Metabarcoding Pipeline (JAMP—https://github.com/Vasco Elbre 
cht/JAMP - see rationale in supplementary materials)—which in-
tegrates Usearch v10.0.240 (Edgar, 2013), Vsearch v2.4.3 (Rognes 
et al., 2016), and Cutadapt 1.9 (Martin, 2011) to process samples. 
In brief, pre-processing of reads included sample demultiplexing, 
paired-end merging (Usearch, allowing for 25% mismatches in over-
lap), primer and adapter trimming (Cutadapt, allowing for 10% er-
rors in primer matching), and sequence length filtration (Cutadapt: 
min/max 295/340 bp – see Figure S2 for rationale). Low-quality 
sequences were filtered and discarded using UPARSE fastq_fil-
ter with maxee = 0.25 and qmax at 60 (Edgar & Flyvbjerg, 2015), 
dereplicated (min. unique size = 2), and clustered with simultane-
ous chimera removal using Usearch (cluster_otus 97% identity). The 
pre-processed dereplicated reads of all samples (including single-
tons) were then matched against the respective clustered molecular 

operational taxonomic units (MOTUs) with a minimum match of 97% 
using usearch_global and strand plus within Usearch.

MOTUs were classified using three approaches to maximize and 
cross-check sponge assignments. We first ran a local BLASTn against 
65 sponge COI DNA barcodes obtained from DNA barcoding efforts 
from this study and the MarineGEO Hawaiʻi biodiversity survey that 
occurred in Kāneʻohe Bay in 2017. We ran an additional BLASTn 
search against a curated reference database containing 16,679 COI 
sequences specific to coral reef fauna from the Mo`orea BIOCODE 
project Inventory (Meyer, 2017). Next, we classified sequences tax-
onomically using the ecotag algorithm (Boyer et al., 2016), which was 
based on a lowest common ancestor classification approach on rep-
resentative sequences for each taxon in relation to a local reference 
COI database that contained 192,929 filtered COI sequences taken 
from GenBank and BOLD (database COI Nov2018 – Wangensteen 
et al., 2018). Lastly, we assigned sequences using the R package, 
Informatic Sequence Classification Trees (INSECT), which takes a 
probabilistic approach (hidden Markov model) to assignment against 
a classification tree built from 396,413 sequences extracted from 
the MIDORI database and GenBank (Wilkinson et al., 2018). Due to 
the limited number of marine invertebrate barcodes within reference 
databases, BLASTn identifications were accepted at ≥85% identity, 
≥85% coverage, and ≥200 alignment length following Ransome 
et al., 2017 who found that these cutoffs provided the greatest ac-
curacy in maintaining the known phylum-level taxonomy across 16 
tested phyla. Ecotag assignments were accepted if the “best iden-
tity” was ≥80% and INSECT assignments were set at a probability 
≥0.90%.

All MOTUs identified as metazoans were translated into amino 
acids and aligned to the BIOCODE reference data set using Multiple 
Alignment of Coding Sequences (MACSE; Ranwez et al., 2011). 
MACSE detects interruptions in open reading frames from nucle-
otide substitutions that can result in stop codons which are likely 
to be pseudogenes. Any MOTUs that did not pass through MACSE 
were removed from the MOTU table and only MOTUs with a read 
abundance above 0.01% were considered in downstream analysis to 
reduce the number of false positives due to PCR and sequencing 
errors (Bokulich et al., 2013; Bista et al., 2017; Elbrecht et al., 2017a).

MOTUs identified as sponges were further examined in Geneious 
10 and translated into amino acids to double check for stop codons 
and introns given that some members of Porifera are known to have 
introns within the targeted barcoding region (Schuster et al., 2017). 
Resulting annotated MOTUs were then examined across competing 
methods, and the final classification was based on the assignment 
with the greatest identity from the three methods. We accepted 
class, order, and family annotations if sequence identity was ≥90%, 
≥92%, and ≥96%, respectively. We accepted classifications to the 
genus and species level if sequence identity was ≥98% and 100%, re-
spectively (Yang et al., 2017). To cross-examine sponge annotations 
to class and order-level assignments, we aligned all sponge-identi-
fied sequences from the metabarcoding in Geneious with the suc-
cessfully aligned COI DNA barcode sequences and generated a 
neighbor-joining phylogenetic tree in Mega10 (Kumar et al., 2018) 

https://github.com/VascoElbrecht/JAMP
https://github.com/VascoElbrecht/JAMP
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using the Tamura Nei model with uniform rates among sites based 
on 1,000 bootstrap replicates (Tamura & Nei, 1993). A total of 270 
positions were used to generate the tree (Figure 1). Sponge MOTUs 
that were identified only to the phylum level were assigned to a class 
and/or order level based on their position within the tree.

2.4 | Analyses

Data were analyzed using R version 3.5.2 (R Core Team, 2018). 
Richness was calculated using the specnumber function in vegan 
(Oksanen et al., 2019). We examined composition by class, order, 
and family based on the overall abundance of unique BMs (bar-
coded morphologies) and MOTUs (metabarcoding). Parametric and 
nonparametric (Wilcoxon signed-rank) paired t tests were used to 
examine differences between metabarcoding richness and the true 
richness with and without Calcarea from the total data set and based 

on assigned class and orders. Both types of paired t tests were con-
ducted to cross-validate p-values due to small sample sizes and vary-
ing degrees of variances, ties, and zeros.

All MOTUs that matched at 100% sequence similarity to the 
specimen derived COI DNA barcodes were classified with the 
sponge name assigned to the barcode by the taxonomist (Figure 1). 
This enabled a direct comparison of the presence and/or absence 
of these particular sponges between methods across ARMS units. 
Any positive (metabarcoding) detection on an ARMS unit where 
the specimen of that species was absent was called a false positive 
and an absence of detection where the specimen was known to be 
present was called a false negative. A presence/absence heat map 
was produced using the Heatmap function in ComplexHeatmap (Gu 
et al., 2016) and compared to examine the efficacy of metabarcoding 
in species detection across replicates. To examine the overall contri-
butions of the COI DNA barcoding effort in deriving species-level 
matches for MOTUs as well as in generating new GenBank database 

F I G U R E  1   Neighbor-joining 
phylogenetic tree of sponge annotated 
molecular operational taxonomic units 
(MOTUs) (in black) and 40 COI barcoded 
morphology (BM) sequences (in blue) to 
validate class and order-level annotations. 
Tree was generated from partial 
sequences spanning 281 position of the 
COI gene. The yellow circle represents 
two distinct sponge species from the 28S 
rRNA barcodes that had identical COI 
DNA barcode sequences

 Aplysilla rosea
 MOTU_132 Aplysilla 

 MOTU_304 Dendroceratida
 MOTU_147 Chelonaplysilla 

 MOTU_49 Chelonaplysilla
 Chelonaplysilla sp. 1 

 Dictyoceratida sp. 1 
 Ircinia sp. 2 

 Dysidea sp. 3 
 MOTU_128 Dictyoceratida
 MOTU_1125 Dictyoceratida

 MOTU_213 Plakina
 Plakina sp. 1 
 Plakortis sp. 1 
 MOTU_6 Plakortis

 Oscarella sp. 3 
 MOTU_217 Oscarella

 Oscarella sp. 5 
 MOTU_58 Oscarellidae

 Oscarella sp. 6 
 MOTU_88 Oscarella

 MOTU_310  Chondropsidae
 Poecilosclerida sp. 1 

 MOTU_454 Poecilosclerida
 Tedania cf. klausi 
 MOTU_306 Tedania

 MOTU_449 Poecilosclerida
 MOTU_602 Poecilosclerida

 Lissodendoryx sp. 2 
 MOTU_591 Lissondendoryx
 Haplosclerida sp. 7 
 Haplosclerida sp. 8 
 MOTU_354 Haliclona
 Haliclona sp. 4 

 Haliclona sp. 24 
 Haliclona sp. 2 

 MOTU_722 Haliclona
 Haplosclerida sp. 1 

 Chalinidae sp. 1 
 Cladocroce sp. 1 
 Haplosclerida sp. 2 
 Haliclona sp. 1 
 MOTU_445 Chalinidae

 MOTU_274 Biemnidae
 MOTU_21 Biemnidae
 Hymeniacidon sp. 2 
 MOTU_111 Hymeniacidon 

 MOTU_324 Halichondria
 Terpios sp. 1 
 MOTU_223 Terpios
 MOTU_142 Suberitidae

 MOTU_161 Hymeniacidon
 Hymeniacidon sp. 1 

  MOTU_1973 Suberitidae
 MOTU_222 Suberitida 

 MOTU_195 Halichondria
 Halichondria sp. 1 

 MOTU_168 Suberitida
 MOTU_92 Suberitida

 MOTU_196 Suberitida
 Protosuberites sp. 2 
 MOTU_45 Protosuberites

 Protosuberites sp. 1 
 MOTU_2 Protosuberites 
 Protosuberites sp. 3 

 MOTU_514 Protosuberites
 Tethyidae sp. 1 
 MOTU_907 Tethyidae

 Tethya sp. 2 

 COI DNA Barcodes: 40

 MOTUs: 41

 COI BMs with
100% sequence similarity

 MOTU_506 Tethya
 Tethya sp. 6 

 Tethya sp. 3 
 MOTU_524 Tethya

 Tethya sp. 5 
 MOTU_145 Tethya

 Tethya sp. 4 
 Chondrillida sp. 1 

 Verongimorpha sp. 1 
 MOTU_346 Chondrillida

 Ancorinidae sp. 1 
 Ancorinidae sp. 3 

 Epizoanthus arenaceus COI AB247348.1

100

100

100

100

100

100

97

100

99

99

60

86

89

100

99

100

100

100

100

100

100

99

100

100

100

100

99

100

99
99

82

100

100

100

100

66

100

93

87

97

96

90

94

98

95

78

67

71

96

67

80

97

78

76

58

87

81

79

78

71

93

69

53

0.050

Homosclerophida

Dendroceratida

Dictyoceratida

Poecilosclerida

Haplosclerida

Biemnida

Tethyida

Suberitida

Chondrillida

Tetractinellida

21 
(54%) 

 Unique COI Barcodes = 39

% COI BMs detected at 
100% sequence similarity in

metabarcoding data set 

% COI BMs missing from
 metabarcoding data set 

(46%)
18 
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species records, we compared BLAST results based on 100% se-
quence similarity with GenBank. All graphs were produced using 
ggplot2 (Wickham, 2016).

3  | RESULTS

3.1 | DNA barcoding and morphology—capturing 
true sponge richness

A total of 240 sponges were subsampled from the 22 ARMS units. 
The sequencing success rate using the 28S rRNA primers was 100% 
resulting in a species list totaling 69 unique sponge BMs (6 homo-
scleromorphs, 15 calcareous, and 48 demosponges) (Table S2 and 
Figure S3). Primers targeting the standard COI barcoding gene had a 
lower overall success rate, identifying 39 unique sponge BMs (5 ho-
moscleromorphs and 34 demosponges). As expected, no sequences 
from the class Calcarea were successfully amplified using the COI 
primers in this study. Demosponges identified as Haplosclerida sp. 7 
and Haplosclerida sp. 8 from the 28S rRNA barcoding had the identi-
cal sequence from the COI barcodes (Figure 1). As a result of overall 
low COI amplification success rate and the reduced ability to deline-
ate species using the COI gene, true sponge richness values across 

ARMS units were based on the combination of 28S rRNA barcodes 
and morphological comparisons with previous collections in Hawaiʽi 
(Figure S2). True sponge richness per ARMS unit ranged from 9 to 18 
BMs with Calcarea and from 5 to 13 BMs without Calcarea (Table 1).

3.2 | Metabarcoding performance

A total of 41 unique sponge MOTUs were identified out of 295 an-
notated metazoan MOTUs (Table S3). Five MOTUs were assigned 
to the class Homoscleromorpha and 36 were assigned to the 
class Demospongiae. There were no MOTUs assigned to the class 
Calcarea. Sponge MOTU richness per ARMS unit ranged from 1 to 
13 and 6 ARMS units had a greater MOTU richness than the true 
richness value when Calcarea were removed (Table 1).

There were significant differences in richness between meth-
ods (p < .001) but when Calcarea was removed from the true 
richness values, richness estimates did not differ overall (p = .13; 
Table 2, Figure 2a). At the class level, there were no richness differ-
ences between methods in either Homoscleromorpha (p = .58) or 
Demospongiae (p = .15) (Figure 2b, Table 2). At the order level, there 
were significant richness differences between BMs and MOTUs 
assigned to Haplosclerida, Poecilosclerida, and Suberitida (p < .01; 

TA B L E  1   ARMS unit metadata. ARMS units with a higher metabarcoding richness than the richness detected without Calcarea from the 
barcoded morphologies are in bold

ARMS unit

Raw 
sequence 
depth

Quality filtered 
sponge sequences

Sponge richness COI 
metabarcoding

Sponge richness 28S rRNA 
barcoding - no Calcarea

Sponge richness 28S rRNA 
barcoding -all sponges

1 99,151 6,134 3 8 13

2 79,252 2,120 5 8 13

3 41,939 3,712 9 10 14

4 133,359 5,613 8 10 18

5 188,537 724 10 13 18

6 147,690 1,827 1 6 13

7 58,971 2,979 7 6 10

8 23,080 3,362 9 11 17

9 136,750 3,130 7 10 15

10 87,137 1,265 7 7 11

11 76,079 397 5 9 16

12 227,257 592 12 10 16

13 108,989 12,681 11 6 9

14 329,916 865 10 10 14

15 489,606 1,322 13 9 16

16 217,388 855 10 11 17

17 86,486 3,943 5 8 15

18 69,353 410 8 10 18

19 35,957 636 7 5 12

20 107,760 1,328 8 6 9

21 71,096 1,178 3 5 9

22 176,210 433 7 7 11
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Figures 2c and 3a, Table 2) with metabarcoding under-representing 
Haplosclerida and Poecilosclerida and overrepresenting Suberitida. 
There were no differences between methods within the orders 
Dendroceratida, Dictyoceratida, Homosclerophorida, or Tethyida. 
The order Tetractinellida was not found in the metabarcoding data 
set and the order Biemnida was present only in the metabarcod-
ing data. Among families in orders represented by both methods, 
Irciniidae and Mycalidae were absent from the metabarcoding 
data and Chondropsidae was present only in the metabarcoding 
data (Figure 3b). The family Suberitidae was overrepresented in 

the metabarcoding data, and approximately 25% of both BMs and 
MOTUs could not be assigned to a family.

Of the 39 unique COI BMs, 21 (54%) were matched at 100% se-
quence similarity to metabarcoding MOTUs (Table S4). When exam-
ining the species occurrences of these 100% matches across all 22 
ARMS units, 23% of the MOTUs were false positives, 24% were false 
negatives, and 53% matched the expected occurrence (Figure 4). The 
majority of the false positives (75%) occurred in MOTUs assigned to 
the order Suberitida and the majority of false negatives (79%) were 
associated with the order Haplosclerida. Only three ARMS units had 

TA B L E  2   Parametric and nonparametric paired t-test results comparing metabarcoding sponge richness with the true sample richness 
from the barcoded morphologies with and without the class Calcarea, by class, and by order

Taxa group Comparison Mean difference CI CI t p-value
p-value 
Wilcoxon

All Sponges 6.32 4.74 7.89 8.35 <.0001 <.0001

No Calcarea 0.91 −0.29 2.11 1.56 .13 .13

Class Demospongiae 0.86 −0.35 2.07 1.48 .15 .14

Homoscleromorpha 0.04 −0.12 0.21 0.57 .58 .77

Order Dendroceratida −0.18 −0.48 0.11 −1.28 .21 .24

Dictyoceratida 0.09 −0.18 0.36 0.69 .49 .57

Haplosclerida 1.68 1.2 2.16 7.7 <.0001 <.001

Poecilosclerida 0.72 0.29 1.16 3.46 <.01 .005

Suberitida −1.86 −2.56 −1.16 −5.52 <.0001 <.001

Tethyida 0 −0.27 0.27 0 1 1

Tetractinellida 0.32 −0.2 0.84 1.27 .22 .24

Homosclerophorida 0.04 −0.12 0.21 0.57 .57 .77

F I G U R E  2   Average ARMS sponge 
richness for barcoded morphologies (28S 
rRNA and COI) and COI metabarcoding 
overall (a), by class (b), and by order (c) 
from 22 ARMS samples
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MOTU detections matching the exact occurrences from the 28S 
rRNA (Figure 4).

Sponge COI DNA barcoding increased species-level MOTU iden-
tification by 37% (15 of the 41 total MOTUs) and overall, 30 out of 
the 39 successfully barcoded sponges (77%) were new species to 
GenBank based on comparisons using a 100% sequence identity 
(Table S4).

4  | DISCUSSION

Ecosystem function, sustainability, and resilience are all critically de-
pendent on biodiversity, but the number of species in the sea and 
the spatial scale of their organization remains unknown (Palumbi 
et al., 2009). The capacity of the existing taxonomic workforce is in-
sufficient to meet global demands for species descriptions and expert 
consultation on biodiversity surveys (Hopkins & Freckleton, 2002; 
Sangster & Luksenburg, 2015; Tancoigne & Dubois, 2013). As 
a result, DNA metabarcoding approaches, pioneered in micro-
bial research, are being explored as a mechanism to provide high-
throughput taxon identification through sequencing without a 

direct reliance on taxonomic expertise (Coissac et al., 2012; Taberlet 
et al., 2012). Metabarcoding approaches have shown great promise 
in some systems to monitor alpha- and beta-diversity of well-studied 
taxa (Ji et al., 2013; Nichols & Marko, 2019; Stat et al., 2017). But 
metabarcoding performance on lesser known taxonomic groups in 
the natural environment is less certain and would be more arduous 
to substantiate without taxonomic validation due to the patchiness 
of DNA barcodes in reference libraries (Ransome et al., 2017).

Despite the concerted efforts of the “Sponge DNA Barcoding 
Project” (Wörheide et al., 2007), sponges arguably remain the most 
difficult group among the lesser known metazoans to identify. The 
promise of DNA barcoding approaches to facilitate identification 
has yet to be realized due to the genetic peculiarities of this prob-
lematic group (Solé-Cava & Wörheide, 2007; Wörheide et al., 2007). 
Evaluation of genetic approaches is typically conducted against 
well-characterized or mock community samples in which the exact 
composition is known (e.g., Elbrecht & Leese, 2017; Ji et al., 2013; 
Nichols & Marko, 2019; Zhang et al., 2018). The performance of me-
tabarcoding approaches for sponges has yet to be evaluated, likely 
due to an expectation that metabarcoding would perform poorly, 
but also because of how difficult this group is to validate against 

F I G U R E  3   The relative abundance 
of unique barcoded morphologies (BMs) 
and molecular operational taxonomic 
units (MOTUs) within orders (a) and 
families (b). BMs are based on sponge 
identifications from 28S rRNA barcoding 
and morphology. MOTUs are based on 
sponge annotations from metabarcoding. 
The numbers in parenthesis equate to 
total sponge richness from 22 ARMS 
samples. No BMs from the Class Calcarea 
are included
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an established community. Our results confirm some expectations 
about the shortcomings of a COI approach for sponge diversity, such 
as preferential amplification and sequencing, and limited species to 
family-level classifications. But despite these limitations, this study 
was still able to generate accurate richness estimates of sponges 
overall (in the absence of class Calcarea) and at the class level using 
universal primers on a complex natural community.

A common concern with DNA metabarcoding is whether results 
reflect the true community (Deagle et al., 2014; Ficetola et al., 2016; 
Ji et al., 2013; Taberlet et al., 2012). When applying this technique 
to complex communities of multiple understudied phyla, such as the 
coral reef cryptobenthos, the question intensifies. Challenges in-
clude the inevitable PCR amplification and sequencing biases associ-
ated with using universal primers that amplify widely divergent taxa, 

and the variable rates of evolution within and among phyla that af-
fect sequence clustering with a fixed divergence threshold (Bokulich 
et al., 2013; Brown et al., 2015; Elbrecht & Leese, 2015; Elbrecht, 
Peinert, et al., 2017; Elbrecht et al., 2017; Fonseca et al., 2010; Kunin 
et al., 2010). However, if abundance and identity of species present 
within a community is not known a priori, it is difficult to know which 
taxa are biased in metabarcoding data as a result of technical and/or 
biological constraints. Our findings begin to address these unknown 
biases within Porifera.

Our DNA metabarcoding approach allocated 41 MOTUs to 
the phylum Porifera, 28 MOTUs less than the 69 verified BMs. 
This shortage resulted largely from the known failure of standard 
COI primers to amplify members of the class Calcarea, which re-
sulted in a loss of 15 species, or 22% of the total sponge diversity 

F I G U R E  4   (a) Presence/absence 
occurrence comparisons of 21 species 
across ARMS units. Selected species were 
based on subsampled sponges that were 
successfully barcoded with both COI and 
28S rRNA genes and had >100% sequence 
similarity match between COI barcodes 
and molecular operational taxonomic 
units (MOTUs) from COI metabarcoding 
(Figure 1). Each box represents an 
individual ARMS unit (22 total). The 
orange boxes highlight species that were 
found in the same units by both methods 
as well as the ARMS units that had exact 
matches across all 21 species. (b) The 
pie chart represents the percentage 
of matched, false positives, and false 
negatives considering all conditions found 
within the metabarcoding data
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(Figure 2a). The remaining 13 missing species included 12 fewer 
MOTUs within the class Demospongiae and 1 within the class 
Homoscleromorpha. Missing sponge MOTUs (false negatives) may 
be a result from differing sponge biomass biasing PCR amplification 
(Elbrecht, Peinert, et al., 2017; Elbrecht, Vamos, et al., 2017), prim-
er-specific species detection limitations (Elbrecht & Leese, 2015), 
the stringency of sequence quality-filtering used in the bioinfor-
matic process, the use of a fixed 97% sequence similarity for clus-
tering (Brown et al., 2015

), and/or various challenges inherent in amplifying this gene in 
sponges (Vargas et al., 2012).

In this study, we intentionally avoided attempting to find the 
“sweet spot” of sponge sequence divergence thresholds for MOTU 
clustering using COI. The differing rates of evolution that can 
exist among members of the same families or genera (Redmond 
et al., 2011), compounded with the known discrepancies in fam-
ily- and even order-level resolution, make such thresholds arbitrary 
(Erpenbeck et al., 2007; Redmond et al., 2011; Wang & Lavrov, 2008; 
Yang et al., 2017

). With many metazoans showing on average <2% intraspecific 
variation but more than 4% interspecific divergence from their near-
est neighbor, a standard of 3% sequence divergence (97% sequence 
similarity) has been proposed for species delineation in many COI 
barcoding efforts (Hebert et al., 2004; Hebert et al., 2003). Applying 
this standard showed congruence in richness between BMs and me-
tabarcoding approaches when the Calcarea were removed from the 
analysis (41 of 54 species). Richness did not differ significantly be-
tween methods for classes Demospongiae and Homoscleromorpha 
(Figure 2a,b, Table 2) and several order-level richness comparisons 
(Table 2). However, the orders Haplosclerida, Poecilosclerida, and 
Suberitida were the exception, with metabarcoding overestimating 
Suberitida richness (creating false positives) and underestimating 
Haplosclerida and Poecilosclerida richness (creating false negatives) 
(Figures 2c and 3a).

One possible explanation for the significant over- and underes-
timations of MOTUs within these orders is intraspecific variation 
(Brown et al., 2015; Meyer & Paulay, 2005). If intraspecific variation 
within Suberitida exceeds the 3% divergence threshold used to clus-
ter sequences, this could explain MOTU overestimation within this 
order. Likewise, if intraspecific variation within Haplosclerida and 
Poecilosclerida is less than 3% divergence this could explain MOTU 
underestimation within these orders. The overestimation of MOTUs 
within the order Suberitida could also result in part from nuclear mi-
tochondrial-like sequences (NUMTS), also known as pseudogenes 
(Bensasson et al., 2001). These nonfunctional copies of mtDNA se-
quences integrate into the nucleus and can easily be co-amplified 
when targeting a conserved fragment of COI using degenerate prim-
ers. When present, pseudogenes lead to an overestimation of the 
number of unique MOTUs (Deagle et al., 2014; Song et al., 2008). 
Relative to other sponges, members of the families Suberitidae and 
Halichondriidae within the order Suberitida have been found to have 
high amplification and sequencing success rates (Vargas et al., 2012). 
Accordingly, we found a high proportion of sequences assigned to 

Suberitidae (Figure 2b). As with previous studies, we attempted to 
minimize the inclusion of pseudogenes using the MACSE pipeline, 
which detects and quantifies interruptions in open reading frames, 
flagging and removing sequences that have nucleotide substitutions 
resulting in frameshifts and stop codons as likely pseudogenes (Ji 
et al., 2013; Leray & Knowlton, 2015, 2017; Yu et al., 2012). In addi-
tion, we visually analyzed MOTU sequences in Geneious to search 
for introns and stop codons. Despite these measures, given the high 
degeneracy of our universal primers and the high sequencing suc-
cess rates for family Suberitidae, we cannot rule out the possibility 
that some of the excess MOTUs result from pseudogenes; although 
this does not explain the large number of false positives found within 
the subset of Suberitida MOTUs we examined (Figure 4).

We found 35 false positives when we examined the presence of 
21 MOTUs across the 22 ARMS units and 21 of these (75%) occurred 
within the order Suberitida (Figure 4). Some of these false positives 
may be the result of small sponges or recently settled sponge larvae 
that were overlooked by the taxonomist but happened to be detected 
by metabarcoding (particularly given the high amplification and se-
quencing success rates within Suberitida) (Vargas et al., 2012). False 
positives within Suberitida could also be a result of morphospecies 
misidentification by the taxonomist. All morphospecies identified on 
the plates were subsampled for DNA barcoding; however, all species 
within the order Suberitida express a yellow color or will turn yellow 
when stressed (Figure S4). Thus, it is possible that some of the vi-
sually censused Suberitida specimens were catalogued inaccurately 
and some false positives may in fact be true detections. Similarly, 
sponge species within the order Biemnida, also frequently yellow, 
may have been misidentified as they occurred in the metabarcoding 
dataset but not the BM dataset. A yellow biemnid, Biemna fistulosa, 
is known to occur within Kāne‘ohe Bay.

False positives may also be a result of tag jumping (Schnell 
et al., 2015). Although this is challenging to detect, we believe it 
may explain the two false positives for Plakortis sp. 1 found in ARMS 
Units 8 and 21 (Figure 4). This species was one of the only BMs de-
tected within a single ARMS unit for which there were false positives 
in the metabarcoding data. Plakortis sp. 1 was dominant in Unit 13 
both in terms of plate coverage (Figure S5) and metabarcoding read 
abundance (Table S3). Thus, it seems probable that the 10 reads of 
Plakortis sp. 1 found in Unit 8 and the 5 reads found in Unit 21 (in-
dicated as false positives) were the result of tag jumping during se-
quencing (Schnell et al., 2015). Similarly, the false positive detected 
in Unit 20 for the species Protosuberites sp. 1 could be a result of 
tag jumping given that this sponge species (MOTU) had the highest 
number of reads overall and was detected visually in all ARMS units 
except Unit 20.

Despite the prevalence of both false positives and false nega-
tives (primarily from the orders Suberitida and Haplosclerida, re-
spectively), our metabarcoding approach was effective at detecting 
rare BMs (those found in a single ARMS unit and/or at very low 
biomass). Such taxa include Verongiomorpha sp. 1, Lissodendoryx 
sp. 2, Tedania cf. klausi, Tethya sp. 2, and Tethyidae sp. 1), (Figure 4; 
Figure S6 – Verongiomorpha sp. 1 example).
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Discrepancies in family-level classifications (Figure 3b) could 
be a result of metabarcoding failing to amplify particular families 
(Ircinidae within Dictyoceratida and Ancorinidae within Tetractinellida 
– Figure S2) (Vargas et al., 2012), difficulties in resolving family-level 
taxonomy using COI, and/or the well-known conflicts in sponge clas-
sification between the 28S rRNA and COI genes (Carella et al., 2016; 
DeBiasse & Hellberg, 2015; Erpenbeck, Breeuwer, et al., 2006; 
Erpenbeck, Hooper, et al., 2006; Erpenbeck et al., 2007; Heim 
et al., 2007; Morrow & Cárdenas, 2015; Redmond et al., 2011; Yang 
et al., 2017). Such difficulties are not necessarily a failing of the me-
tabarcoding approach, but rather known limitations of the short ampl-
icon fragment lengths as well as taxonomic challenges associated with 
sponges. Nearly 25% of species were unclassified by either method, 
indicating considerable future challenges associated with species dis-
crimination in sponges regardless of the approach. It will take dedi-
cated taxonomic study and population of reference databases with 
reliably identified and vouchered individuals to overcome these chal-
lenges if sponge biodiversity is to be better understood in coral reef 
cryptobenthic environments. Our results highlight this pressing need 
as 30 of the 39 COI sequenced BM sponge vouchers from this effort 
are new species additions to GenBank and from these, 15 out of the 
41 sponge MOTUs were identified to the species level, increasing me-
tabarcoding sponge annotations by 37%.

5  | CONCLUSIONS

Here, we compare a community metabarcoding approach to careful 
taxonomic evaluation of a naturally occurring sponge community. We 
used a user-friendly and computationally fast metabarcoding R modular 
package bioinformatic pipeline on a complex coral reef cryptobenthic 
community. After taking into consideration the inability of the primers 
used to amplify sponge species from the class Calcarea, we found that 
metabarcoding adequately captured richness overall and at the class 
level for demosponges and homoscleromorphs. We uncovered techni-
cal and biological constraints for the orders Suberitida, Haplosclerida, 
and Poecilosclerida that complicated richness comparisons, but found 
congruence with other orders. We successfully detected rare sponges 
with low biomass, and most likely detected real species on some ARMS 
units that were missed by the taxonomist due to morphotype similari-
ties. Although there are unavoidable challenges when metabarcoding 
a complex community composed of multiple phyla, this study imparts 
a greater level of confidence in richness values obtained for sponges 
overall and at the class level when using a 97% sequence similarity 
threshold for MOTU clustering.

There has been much debate in the literature regarding the ad-
vantages and disadvantages of MOTU clustering, differing clustering 
algorithms, exact sequencing variants, and strong opinions can be 
found on all sides (Brown et al., 2015; Callahan et al., 2017; Flynn 
et al., 2015; Glassman & Martiny, 2018; Nearing et al., 2018; Prodan 
et al., 2020; Schmidt et al., 2015). This active debate can confuse 
and discourage researchers from entering the otherwise promis-
ing field of DNA metabarcoding. Debate occurs because there are 

methodological trade-offs and no perfect solution currently ex-
ists. Choosing an appropriate clustering method (or not) should be 
based on the system being studied and the question of interest. 
The field will undoubtedly advance as more empirical performance 
tests and validations such as this are examined across differing 
phyla. However, metabarcoding approaches will still be confounded 
when applied on a global scale if method standardized if not upheld 
(Ransome et al., 2017), metabarcoding performance is not tested 
across all phyla, and if each taxon does not have multiple vouchered 
reference sequences from across their geographic ranges (Meyer 
& Paulay, 2005). This complexity is why the importance of regional 
reference databases cannot be overemphasized; any metabarcod-
ing approach will be further confounded without DNA barcodes 
attached to regional voucher specimens. DNA barcoding in this 
study alone found 77% of the sponge vouchers to be new species 
to the GenBank database. With the continued decline in training 
and funding for taxonomists, regionally vouchered databases are a 
distant goal, and without them the true promise of eDNA and DNA 
metabarcoding approaches to biodiversity characterization and 
monitoring of complex communities may never be reached. But, if 
we collectively make a concerted effort to include and fund taxono-
mists in empirical field-based metabarcoding performance tests, in-
terpretability will substantially improve and the path toward reliable 
biomonitoring of complex communities using genetic approaches in 
our changing environment could become a reality.
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